
From Legacy Model to Future Federate:
The Janus Simulation Object Model

Leroy A. Jackson
Operations Research Analyst

United State Army
TRADOC Analysis Center—Monterey

Monterey, CA

Arnold H. Buss
Adjunct Professor

Operations Research Department
Naval Postgraduate School

Monterey, CA

Larry R. Larimer
Operations Research Analyst

United States Army
TRADOC Analysis Center

Fort Leavenworth, KS

Keywords:
SOM, HLA, ADS, OMDT, Janus, Legacy Simulation

ABSTRACT: The development team has been investigating the feasibility of including Janus in future HLA
Federations. One necessary condition for a potential Federate is that it have an HLA Simulation Object Model
(SOM). In this paper we will describe a conceptual mode and a SOM developed for Janus and the methodology
used to develop it. This report provides the final results of work described in 97S-SIW-138 during the previous
workshop. It includes a more detailed description of the methodology outlined in the previous paper. It highlights
how the process used for SOM development differs in some critical ways from the current recommended
FOM/SOM development process model. It stresses the benefits of first building the conceptual model of a legacy
simulation during SOM development. It explores some advantages of including an analyst on the SOM
development team.

1.0 Introduction

The High Level Architecture (HLA) holds the
promise for interoperability of simulations by their
participation in HLA Federations. Ultimately, a new
generation of simulations will be produced, each of
whose design incorporated HLA and object model
concepts. Until these simulations are fully
implemented, tested, and have undergone the VV&A
process, the only source for concrete, valid models is
the reservoir of legacy simulations.

One such legacy simulation is Janus. This paper
describes the process undergone in taking Janus
through a crucial step in the HLA process, the
development of a Simulation Object Model (SOM).

The process for constructing a SOM from a legacy
simulation consists of first developing a

Comprehensive Object Model (COM), an object
model that captures all the essential features of the
simulation. The COM should be sufficiently
complete that a SOM may be extracted by simply
removing those elements not necessary for
interoperability. Conversely, the COM is an
accurate, albeit abstract, object-oriented depiction of
the simulation’s capabilities. Consequently, the task
of determining a simulation’s suitability for
inclusion in a federation is made easy; if
examination of a simulation’s COM indicates lack
of necessary features, then they are likely not to be
supported by the underlying simulation model.

2.0 Background

Janus is a high resolution, interactive, six-sided,
closed, stochastic, ground combat simulation.
Lawrence Livermore National Laboratories

developed Janus to model nuclear effects, and the
U.S. Army’s Training and Doctrine Command
(TRADOC) Analysis Center (TRAC) at White Sands
Missile Range (TRAC-WSMR) is responsible for
subsequent Janus development. TRAC-WSMR
modified Janus extensively for Army high resolution
combat model requirements. Since its fielding in
1978, Janus has been used extensively within the
U.S. Army for both training and analysis. Janus is
also used for analysis by RAND Corporation, the
United States Marine Corps, and by the armed forces
of the United Kingdom, Australia, France, and
Germany.

Janus represents a substantial investment from DoD
and the U.S. Army. There is considerable incentive
to extend its useful life. This has resulted in
numerous enhancements to Janus, extending its
capabilities considerably beyond those originally
envisioned. Janus has been distributed with other
Janus simulations [12] and with other models [13].

2.1 Janus SOM Development Project

The Janus SOM Development Project was initiated
to investigate the feasibility for Janus participation in
future HLA federations. However, Janus, as a legacy
model, provides some significant challenges in
meeting the HLA requirements. Janus is coded in a
procedural language with no well-documented object
model definition. The ongoing research is to
determine if Janus can be described in an HLA
compatible way by developing an HLA SOM for
Janus (JSOM) that is both useful for some HLA
federation and is faithful to the capabilities and
limitations of Janus. The success of this effort will
help pave the way for other legacy models to
conform to HLA requirements and to participate in
future HLA federations.

Preliminary work on the JSOM Development Project
was reported in [7]. Further results are reported in
[8].

2.3 Janus as an Analytic Tool

 Historically, Janus has been a highly successful
analysis tool to research the effectiveness of new
military systems and tactical doctrines. Two
components are key for this success: a flexible
database and a powerful post processor.

The robust representation of systems in the database
allows the analyst to model new military systems and

proposed modifications to existing systems. Systems
are modeled as a combination of a platform, weapon
systems, and sensors. The database includes nearly
every ground vehicle combat system, dismounted
crew-served weapon system, and Army rotary wing
aircraft in the U.S. inventory and most of those used
by threat nations. Systems that are not in the
database can be easily created. Over 350 attributes
are available in the database for the analyst to model
platforms, weapon systems, sensors, projectiles,
barriers, and weather. Table 1 provides the reader
with a more detailed summary of the attributes in the
Janus database available to model entities. The
current version of Janus also represents limited types
of fixed wing aircraft and precision guided
munitions.

The Janus Post Processor details entity interactions
that occur during the execution of each scenario.
Output reports include an artillery fire report,
indirect fire ammunition expenditure report, direct
fire reports, detection tables, coroner’s report, and
killer/victim scoreboard. Additionally, Janus
provides a supplementary tool, the Janus Analyst
Workstation. This tool has an “instant replay”
capability for viewing events graphically as they
occurred during the scenario run. The Janus Analyst
Workstation also provides statistical output that is
synchronized with the scenario run time to assist the
analyst. [5]

3.0 Methodology

3.1. Overview

The methodology used to create the Janus SOM
consists of two steps, as shown in Figure 1. First, a
Comprehensive Object Model (COM) is built from
the simulation. The second step consists of
extracting a SOM from the COM.

The COM is a comprehensive, object-oriented
description of the underlying simulation model,
whereas an HLA SOM is more special-purpose. The
COM enables an analyst to include additional

SOM
COM

Legacy
Simulation

Figure 1: COM Development Process

information in the SOM above and beyond the
minimum requirements for interoperability.
Development of the Comprehensive Object Model
requires a working knowledge of the simulation
being modeled. In this case, the user’s manual,
graphic user interface, database, database manual,
and software design manual provided sufficient
knowledge of the simulation to produce the COM.
The basic steps in the COM development process are
shown in Table 1.

Table 1: Steps in the COM Process

1. Identify all the instantiable objects in the
simulation.

2. Identify all the attributes used to define the
instantiable objects.

3. Develop an object class structure.
4. Assign the attributes to the appropriate abstract

class level for each object class.
5. Identify all possible interactions and associated

interaction parameters.
6. Return to object attributes to include those

attributes identified while working on
interaction data and verify that new attributes do
not reveal additional attributes that were
previously overlooked.

7. Return to interaction table and verify all
necessary attributes and parameters are noted.

8. Use above information to complete object model
tables.

The steps shown in Table 1 produced the bulk of the
information necessary to complete the object model
tables. The component structure and associations
were identified after the process outlined above was
complete and before work on the tables began.
The object model lexicon and attribute parameter
definitions were entered as the tables were produced
using the Aegis Research Object Model
Development Tool (OMDT) software [10]. The
OMDT allows the user to enter object model lexicon
and attribute/parameter definitions from the object
class structure table. In this way, the OMDT greatly
simplifies the task of entering this information and
avoids the difficulty of switching frequently from
attribute/parameter table to object model lexicon
table and back to make appropriate entries.

After the COM is complete, it is a relatively simple
matter to extract the appropriate table entries to
create the HLA SOM. As discussed earlier, there
may be compelling reasons to include additional

information in the SOM above the minimal
requirements for simulation interoperability.
Additionally, should it be deemed necessary or
appropriate, multiple SOMs could easily be extracted
from the COM, each targeted at a specific HLA
federation.

3.2. Detailed Description of Methodology

1. Identify all the instantiable objects in the
simulation. In the case of an entity-level
simulation such as Janus, this step consists of
determining precisely which entities exist in the
model. This step is more conceptual when the
simulation is procedural (as in the case of Janus)
than if the model was originally object-oriented.
A model implemented in a procedural manner
has no built-in notion of distinct entities, as is
the case with object-oriented implementations.
Consequently, the “objects” in the COM and
SOM are conceptual representations of the
underlying simulation rather than explicit
reflections of the underlying structure.

2. Identify all the attributes used to define the
instantiable objects. For procedural models such
as Janus, this step can be the most challenging.
Documentation for many attributes can be
located in the model’s database, the user
interface, or the manuals. However, short of
reviewing the actual code, it can be difficult to
be certain that all relevant attributes have been
identified.

3. Develop an object class structure. The object
class structure was largely determined by
observing similar classes with the potential for
common attributes. Note that the class hierarchy
was developed from the bottom up rather than
from the top down.

4. Assign the attributes to the appropriate abstract
class level for each object class. The common
attributes identified in the previous stage were
assigned to the highest possible position in the
hierarchy.

5. Identify all possible interactions and associated
interaction parameters. This step also identified
some object attributes that were previously
overlooked.

6. Return to object attributes to include those
attributes identified while working on
interaction data and verify that new attributes
do not reveal additional attributes that were
previously overlooked. This step essentially

repeats Step 5 with the new attributes identified
in Step 6.

7. Return to interaction table and verify all
necessary attributes and parameters are noted.
The new attributes added in Step 6 could give
rise to further interactions and interaction
parameters.

8. Use above information to complete object model
tables. When no additional interactions produce
new attributes or attributes interactions, the
information is assembled in the completed object
model tables.

3.3. Potential Omissions

Despite the effort and thought that have gone into
the JSOM development process outlined in this
document, the complexity of the Janus simulation
suggests the potential for errors or omissions in the
completed Janus COM and SOM.

Because the approach to SOM development was
conceptual, there is some chance that small numbers
of object attributes and interaction parameters may
have been overlooked. Another approach would have
been to produce the Comprehensive Object Model
and the SOM by reviewing the Janus code. There are
benefits and drawbacks associated with both
approaches.

There are primarily two benefits to the conceptual
approach. The object model development is not
restricted by the structure and implementation of the
simulation code, and the time required to produce a
near complete object model is vastly reduced.
Without looking at the underlying code, the modeler
is free to use both operational experience and
knowledge of object model methodologies to produce
an object oriented representation of the simulation.
This facet of the conceptual approach seemed to be
particularly advantageous while working with a
procedurally implemented legacy simulation.

The second benefit of the conceptual approach,

reduced object model development time, was also
important in working with Janus. Janus consists of
over two hundred thousand lines of code and
includes many code improvements and upgrades
incorporated over the last twenty years. While Janus
is well documented, the time required to gain a
working knowledge of the Janus code, and then to
follow the code to produce an object representation
would have been prohibitive.
The most likely errors of omission occur in the
attribute/parameter table and the interaction table.
The Janus simulation uses hundreds of attributes to
define the many classes of objects. An overwhelming
percentage of these attributes was easily identified
by reviewing the database, graphic user interface,
user’s manual, and software design manual.
However, some attributes were identified by
supposition. It is this relatively small category of
attributes that indicates there may be others that
were overlooked. Similarly, there may be interaction
parameters that were omitted from the interaction
table.

3.4 Example: The Platform Class

The initial Object Class Structure Table was
constructed using an organization chart format. This
simple format provided a clearly defined class
hierarchy and structure for later documentation in
the HLA object model template tables.

The platform subtree of this class hierarchy is based
primarily on the Janus database which lists each
platform the user might introduce into a scenario.
Examples of these platforms include the M1A1
Abrams tank, the M2 Bradley Infantry Fighting
Vehicle, and the individual rifleman. Starting with
these platforms as the instantiable objects in the class
hierarchy, a tentative hierarchy of abstract classes
was produced by extracting common attributes for
the superclasses. Ultimately, the base platform
superclass was reached. The resulting object class
hierarchy is depicted in Figure 1.

Dismounted
Personnel

Generic Combat Arms

Wheeled

Artillery Engineer Air Defense

Towed Tracked

Ground
Vehicle

Attack Cargo/Utility Reconnaissance

Rotary Wing Fixed Wing

Aircraft

Platform
Superclass

Figure 2: Original Platform Class Hierarchy

The class hierarchy in Figure 2 corresponds closely
with conventional hierarchies developed for
platforms. Although constructed from the bottom up,
as described above, the decision to first abstract
functional attributes at the early stages produced a
hierarchy in which the base platform superclass is
first subclassed by physical type (ground vehicle vice
aircraft, for example) with the functional distinctions
appearing lower in the tree. This structure is most
useful for federations in which the physical
distinctions are more important to the other
federates, since subscription to the platform types
may be done at a relatively high level. However, for
federations in which the concern of the federates is
more at the functional level, this structure is less
useful. Subscription must be done at lower levels in
the hierarchy, and it is more difficult for a fellow
federate to determine subscription requirements. An
example of the latter type of federation is the
Analysis Federation proposed by Jackson and Wood
[4].

The platform class hierarchy was refined to produce
an alternate class hierarchy based on the army
concept of battlefield operating systems. This
illustrates the flexibility of the HLA simulation
object model to provide more than one appropriate
model of a simulation for military analysis and
training. This flexibility in producing alternate class
hierarchical structures can be used by the analyst to
focus his data collection to that necessary to quantify
his measures of effectiveness. The refined object
class structure is shown in Figure 3.

The complete SOM may be found on the World Wide Web at
the following URL:
http://131.120.142.115/~buss/Larimer/JSOM5.8.omd

4.0 Comparison

We will now compare our object model development
process with an 8-step sequence of activities
proposed by Lutz [9]. Note that Lutz’s methodology

is proposed for SOM as well as FOM development,
whereas ours is only applicable to the SOM
development process. Table 2 summarizes Lutz’s
methodology.

Table 2: Summary of Lutz's Methodology
1. Determine Publishing Capabilities of

Object/Interaction Classes.
2. Determine Subscription Requirements for

Object/Interaction Classes.
3. Determine Publishing Capabilities for

Attributes/Parameters
4. Determine Subscription Requirements for

Attributes/Parameters.
5. Prepare Object Class Structure Table.
6. Prepare the Object Interaction Table.
7. Prepare Attribute/Parameter Table.
8. Prepare Object Model Template Extensions

Rotary Wing
Platform

Fixed Wing
Platform

Aircraft
Platform

Tracked
Platform

Wheeled
Platform

Ground Veh
Platform

Rifleman
Platform

Crew Served
Platform

Dismounted
Platform

Maneuver
Platform

Intel/C&C
Platform

Counter Battery
Platform

Cannon
Platform

Fire Support
Platform

CSS
Platform

Mobility/Surviv
Platform

Air Defense
Platform

Platform
Superclass

Figure 3: Revised Platform Class Hierarchy

Step 3 in Table 2 corresponds roughly with Step 2 of
Table 1: Steps in the COM Process. The primary
difference here is that it was first necessary to assign
the available attributes to appropriate levels in the
class hierarchy to form meaningful inheritance
relationships among object classes. Additionally,
identification of interaction parameters was deferred
until the interaction classes were identified. For the
reasons described previously, subscription
requirements were not included in either the Janus
COM or its SOM.

One can see that the two methodologies for
producing an HLA object model are similar in many
respects. The primary differences are in the
development of the object class structure table and
the sequence in which the attribute/parameter table
is completed. The contrast between the two
approaches is summarized in
Table 3. As Lutz points out, “It should be noted that
this suggested sequence of development activities is
not the only process that can lead to efficient and
robust object model construction... many deviations
from this process are possible which can lead to
successful results” [9].

5.0 Role Of The Analyst

It is advantageous to include an analyst during SOM
development, rather than only a programmer or
implementer. As a minimum, the analyst should be
an active member of any SOM development team.
This is more important if the simulation model is to
be used as an analysis tool.

The programmer or implementer can certainly
produce an object model of a given model quickly
and efficiently. However, it is the analyst who must
use the model to quantify measures of effectiveness.
Lutz points out that the model proponent has
significant latitude in what is included in the SOM
based the projected use of the model [9]. The analyst
brings to the SOM development process an
understanding of the kind of studies in which the
model may be included, what measures of
effectiveness the model may be expected to quantify,
and therefore what is important to include in the
SOM.

6.0 Summary

Implicit throughout this paper is an important point
that is often lost in discussions of object-oriented
design. Namely, the fact that a simulation’s
representation via an Object Model is independent of
the manner in which it is implemented. As we have
demonstrated, it is possible to define an Object

Table 3: Comparison of Lutz and COM Methodologies

Step Lutz SOM Development Process COM Methodology
1 Determine Class Publishing Capabilities Identify All Instantiable Objects

2 Determine Class Subscription Requirements None

3 Determine Attribute/Parameter Publishing
Capabilities

Identify All Attributes Available to Describe
Objects

4 Determine Subscription Requirements for
Attributes/Parameters

None

5 Prepare Object Class Structure Table Build Class Hierarchy based on Common
Attribute Object Groupings; Simultaneously

Prepare Attribute portion of
Attribute/Parameter Table

6 Prepare Object Interaction Table Identify Interaction Parameters and Prepare
Object Interaction Table; Simultaneously

Prepare Parameter portion of
Attribute/Parameter Table

7 Prepare Attribute/Parameter Table Not Necessary

8 Prepare Object Model Template Extensions Same

9 None Reduce the Comprehensive Object Model to
Produce a SOM Appropriate for Federation

Needs

Model for Janus despite the fact that its
implementation is completely procedural. A user of
Janus through this Object Model interface would
have no knowledge of, nor any need to know,
Janus’s implementation. Note that this is in fact a
nice illustration of the object-oriented principle of
encapsulation.

All legacy simulations should be considered as
potential federation members. Developers and
proponents of such simulations can proceed by
developing Comprehensive Object Models, as we
have done here for Janus. Since such a COM relies
only on the simulation itself, it would not be
necessary to obtain detailed information about a
federation. Successful construction of a COM is
primarily a function of the simulation’s ability to be
represented in abstract, object-oriented terms. In the
case of Janus, the design of the database turned out
to be a critical factor in its Object Model
representation.

As mentioned previously, a SOM may easily be
constructed from a COM by extracting those parts
not necessary for interoperability. A COM being
more general than a SOM, having a COM in hand
makes construction of a SOM a fairly
straightforward matter (although implementation for
a particular SOM may not be entirely trivial).
Models that come equipped with COMs could
therefore be added to federations much more quickly
than those without. A COM also gives flexibility for
potential inclusions in multiple federations, since
additional SOMs could be produced for different
interoperability needs. Though potentially different,
each valid SOM produced in this manner would
necessarily be consistent with the underlying
simulation, as well as any other Object Models so
produced.

7.0 References

[1] The Janus 3.X/VMS Model Software
Programmer’s Manual, Contract No. DABT65-
92-D-0002, November 1993.

[2] HLA OMT Reference Version 1.0, dated 15 Aug

96.

[3] HLA OMT Extensions Reference Version 1.0,

dated 20 Aug 96.

[4] Jackson, Leroy A. and J. Ralph Wood,
“Exploiting the High Level Architecture for
Analysis in Advanced Distributed Simulation,”
1997 Spring Simulation Interoperability
Workshop, Orlando, FL, March 1997.

[5] The Janus Version 6.3 Software User’s Manual,

U.S. Army Simulation, Training, and
Instrumentation Command, Orlando, FL, 1995.

[6] The Janus Version 6.0 Database Manager’s

Manual, U.S. Army Simulation, Training, and
Instrumentation Command, Orlando, FL, 1995.

[7] Larimer, Larry, Arnold Buss, and Leroy

Jackson, “Building a Simulation Object Model
of a Legacy Simulation,” 1997 Spring
Simulation Interoperability Workshop, Orlando,
FL, March 1997.

[8] Larimer, Larry R., Master of Science Thesis,

Operations Research, Building a Simulation
Object Model of a Legacy Simulation (Draft),
Naval Postgraduate School, June 1997.

[9] Lutz, Robert, “HLA Object Model Development:

A Process View,” Spring Simulation
Interoperability Workshop, Orlando, FL, March
1997.

[10] OMDT User’s Guide, Alpha 1.0, Developed by

Aegis Research and Sponsored by The Defense
Modeling and Simulation Office. 1996.

[11] Parish, Randall M. and Alvin D. Kellner, Target

Acquisition in Janus Army, U.S. Army
TRADOC Analysis Command, White Sands
Missile Range, NM, Oct 92

[12] "JLINK - A Distributed Interactive Janus" by

Major Maria C. Pate and Major Glen G.
Roussos.
http://131.120.57.3/jlink/JLINKphlanxArticle.ht
ml

[13] Roussos, Glen, “Attaining Interoperability

between ModSAF and JANUS,” 64th MORS
Symposium, Fort Leavenworth, KS, June 1996.

8.0 Authors’ Biographies

LEROY A. JACKSON, Major US Army, is an
army artillery officer with twenty years of enlisted

and commissioned service. He graduated with a B.A.
in Mathematics from Cameron University in 1990
and with an M.S. in Operations Research from the
Naval Postgraduate School in 1995. He is currently
assigned as an operations research analyst at the
U.S. Army Training and Doctrine Command
(TRADOC) Analysis Center (TRAC) Research
Activities in Monterey, California and he continues
his graduate studies at the Naval Postgraduate
School.

ARNOLD H. BUSS is an Adjunct Professor of
Operations Research at the Naval Postgraduate
School. He received a BA in Psychology from
Rutgers University, and MS in Systems and
Industrial Engineering from the University of
Arizona, and a Ph.D. in Operations Research from
Cornell University. His research interests include
simulation modeling and object-oriented software
design. He is a member of INFORMS, MORS, and
POMS.

LARRY R. LARIMER, Captain US Army, is an
army infantry officer with fifteen years of enlisted
and commissioned service. He graduated with a BS
degree in Organizational Leadership from the United
States Military Academy in 1986 and with a MS
degree in Operations Research from the Naval
Postgraduate School in 1997. He is currently an
operations research analyst at the U.S. Army
Training and Doctrine Command (TRADOC)
Analysis Center, Fort Leavenworth. Captain
Larimer’s thesis research is the basis for this paper.

Annex A: A Portion of the Janus SOM Attribute/Parameter Table in OMDT Format

